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For a description of the Au—-Fe complex which is discussed in Part I of this article, a model by
Ludwig and Woodbury is adopted. This model does not allow for an analysis of the observed
hyperfine interactions in a simple LCAO description. Instead a model of exchange coupled spins
is proposed. The calculated actual hyperfine interactions are compared with data of atomic wave
functions for Au and Fe. Due to covalency and/or hybridization effects the quantities {r %),
which characterize the d-orbitals on the Fe and Au atoms are considerably reduced in silicon
with respect to the free atoms. As a result, the s-core polarization effects which determine the
isotropic hyperfine interactions are found to be weaker in a silicon matrix than in most other
materials.

Mit Hilfe eines Modells von Ludwig and Woodbury wird der Au-Fe-Komplex beschrieben, der
in Teil I dieser Arbeit eingefithrt wurde. Dieses Modell ist allerdings nicht fur die Analyse der
beobachteten Hyperfeinwechselwirkungen mittels Linearkombinationen atomarer Wellenfunk-
tionen geeignet. Daher wird ein Modell austauschgekoppelter Elektronenspins vorgeschlagen.
Damit werden die wirklichen Hyperfeinwechselwirkungen berechnet und mit atomaren Wellen-
funktionsdaten von Gold und Eisen verglichen. Kovalenz- oder Hybrid-Effekte reduzieren die
{r=3%4-Werte, die die d-Orbitale der Gold- und Eisen-Atome im Silizium charakterisieren, im Ver-
gleich zu denen der freien Atome. Die Polarisations-Effekte der inneren s-Elektronen-Schale, die
fiir den isotropen Teil der Hyperfeinwechselwirkung verantwortlich sind, sind daher in der Sili-
zium-Matrix auch betridchtlich schwicher als in den meisten anderen Materialen.

1. Introduction

In the early 1960’s Ludwig and Woodbury proposed a highly successful model for the
description of transition metal impurities in silicon [1 to 3]. With the use of EPR
they extensively studied a series of substitutional and interstitial 3d transition metal
impurities in various charge states. In the framework of their model they were able
to account for the observed electron spin in all cases. If the effective orbital momentum
was not equal zero, they were able to calculate the observed deviations of the spectro-
scopic splitting factor from g =~ 2, with the use of an adapted Landé formula. Also
Jahn-Teller effects could be explained or predicted. Since their work relatively little
effort has been spent in this field. Only recently there is renewed interest in transition
metal impurities in silicon (see [15 to 21] of Part I).

In view of the success of the original work by Ludwig and Woodbury, it is ap-
propriate to adopt their theory for the basic description of the present problem. They
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distinguish the cases of substitutional and interstitial impurities in the silicon lattice.
A substitutional atom is required to establish covalent tetrahedral bonds with its
four nearest neighbours. This will be achieved by promotion of d-electrons and sub-
sequent sp3 hybridization, in order to arrive at a 3d"4s4p3 configuration. Due to the
crystal field of the silicon lattice, the energy levels of the d-electrons will split into a t,
triplet and an e doublet, overlap with nearby lattice sites causing the triplet state
with the d,y, d,., and d,, orbitals to have a higher energy than the doublet state with
the dy:_, and d,. orbitals. According to Ludwig and Woodbury a weak crystal field
approximation holds in a covalent solid such as silicon, so that Hund’s rule has to
be applied when filling the five 3d levels with the remaining n electrons.

An interstitial transition metal impurity, they argued, needs no covalent bonding.
In the silicon environment all electrons will be confined to the 3d shell, resulting in
a pure 3d" configuration. For the tetrahedral interstitial position, the order of triplet
and doublet d-electron levels is reversed, the doublet having higher energy. Again
Hund’s rule applies.

The most common interstitial transition metal impurity in silicon is iron. If neutral
it gives rise to a 3d® configuration. Due to two missing electrons in the 3d doublet
level, an orbital singlet state with an electronic spin value 8 = 1 and an effective
angular momentum value L’ = 0 results. The isotropic resonance of iron at ¢ = 2.070
is one of the most extensively studied spectra in silicon [1 to 5]. The 3d” configuration
of Fef” does not have an orbital singlet ground state as one electron is missing from
the 3d triplet level. The resulting dynamic Jahn-Teller distortion yields an isotropic
resonance. This state with § = 3/2 and L" = 1 gives J = 1/2 and ¢ ~ 10/3 (actually
g = 3.562) [1, 3].

For 4d and 5d transition elements essentially the same model is expected to apply.
In this case the observed spectra for Pdy and Pty require a bound hole, additional
to the d®-sp® configuration [6]. Gold is generally assumed to occupy substitutional
positions in silicon. A 5d"6s6p® configuration for Au? would result in an orbital singlet
state with § = 3/2 and L’ = 0. As discussed in the previous paper I, no EPR
spectrum from isolated gold atoms has ever been observed. Only paired with other
impurities, like Cr or Mn [3, 7] or Fe, has gold been recognized in EPR. Nevertheless it
is one of the most extensively studied impurities in silicon [8]. On the basis of theoret-
ical calculations, van Vechten and Thurmond [9] suggest an [interstitial Au -+
+ vacancy] complex to describe gold in silicon. In view of its versatility we will
further adopt the original model by Ludwig and Woodbury.

In this work we will try to give an analysis of the observed hyperfine interactions
of the Au-Fe pair as described in Part I. Such an analysis is generally carried out on
a particular choice of wave function for the unpaired electron. For deep level imper-
fections in silicon, linear combinations of atomic wave functions have often proved
appropriate [10]. The position of an energy level far from either of the band edges
and the consequent localization of the electron primarily upon few lattice sites, favours
an LCAOQO description above one with Bloch-like lattice states. Especially for radiation
defects in silicon and their complexes with impurities, this approach has been very
successful. In the following we will show that it cannot be applied without adaptation
to transition metal complexes. A brief discussion of the LCAQO approach will be given
in the next section, as well as a description of the effect of coupling of two localized
electron spins as follow from the Ludwig-Woodbury picture.

Data on atomic wave functions for gold and iron as required for an analysis of the
hyperfine interactions are collected in Section 3. The experimental data are compared
with those collected in Section 3, in order to arrive at a detailed electronic model of
the Au-Fe complex.
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2. Theoretical Treatment
2.1 Hyperfine and quadrupolar interaction in the LCAO description

For many defects in silicon a one-electron description is sufficient to account for the
phenomena observed with EPR. The wave function of the unpaired resonance electron
is generally described as a linear combination of atomic orbitals which are centered
on a few atoms around the paramagnetic center. In the case of radiation defects they
generally comprise just s- and p-orbitals. For transition metal impurities, atomic
d-orbitals should also be included. Summing over atomic sites 7, a wave function has
the form

W= 3 mixiys + Bah + yiva) - )

For the sites of 2°Si nuclei (I = 1/2, 4.7%, abundant) one takes y; = 0, while «; and
B refer to the atomic 3s and 3p orbitals. For transition metals, primarily d-orbitals
are important, while s- and p-orbitals may be mixed in.

The wave function (1) gives rise to a hyperfine interaction with nucleus v of the
form A; = a;1 + B;. The isotropic part, which is the Fermi contact interaction,
equals

a; = S agupgxpxnid [pi0)]2 . (2)

Here |ps(0)|? is the electron density of the relevant atomic ns orbital of atom 7 at the
site of its nucleus.

For either an atomic p- or d-orbital, the anisotropic part B; is axially symmetric
with By = —2B", = 2b; and

by =2 gupgxuxmiBt rh or Zgupgxusnivi rodi . (3)

Here (r=3) is the expectation value of r~3, weighted over the atomic p- or d-orbital.
Information about the wave function as contained in the parameters 0}, o, B2, and
y7 can be obtained if the atomic wave function parameters |pg(0)[2 and {r=3);q are
known. For a number of elements, values have been estimated from both theoretical
and experimental data (e.g. [10]). Data for Au and Fe will be given in the next section.

The electron wave function is also reflected in the nuclear quadrupole interaction
through the interaction of the electric quadrupole moment of a nucleus with the
electric field gradient from the surrounding electron distribution. The interaction
parameter as determined by EPR can be written:

) 2
P Qe (4)
4121 — 1) 0z2
in which @ is the nuclear electric quadrupole moment and 62V /0z? is the electric field
gradient in the axial z-direction (see e.g. [11]). The field gradient is completely deter-
mined by the wave function configuration.

An enumeration of the effects of different atomic orbitals has been given by Townes
and Dailey [12]. Closed shells and electrons in s-orbitals do not contribute to a field
gradient. In general, the lowest incompletely filled p-orbital determines the field
gradient mostly. For transition metal ions, d-orbitals are prominent in determining
their physical properties, so that one should always carefully consider which orbitals
to include. Also in the formula for the field gradient the expectation value of =2 enters:

eV 4 , 4
Ez? 2—5- e <7'_3>P LOI' —7— e <r—3>d . (5)
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Substitution of the LCAO wave function (1) results in

_ 2 Lg g R 1ose .
= [(2] :T)‘ _5‘7]1/3z <7' >p or m 7/)%')/1 <7' >d . (6)

The electronic structure of transition metal impurities in silicon imposes serious
restrictions on an LCAO treatment. There are a number of electrons or holes in the
d-shell, whose c¢lectron spins sum up according to Hund’s rule, so that a one-electron
description is not appropriate. Fractions of electrons should no longer appear in (3)
and (6), but instead the fotal unpaired electron spin density and the total electron
charge density should enter. This can give rise to two different expectation values
{r=3) for a particular d-shell configuration. As long as Hund’s rule applies the two
values will be the same.

2.2 Exchange coupled spins

A serious problem for the use of an LCAO wave function results from the fact that the
present EPR spectrum arises from a complex of two transition metal impurities.
Each of them has its own d-shell configuration, each giving a total electron spin
according to Hund’s rule. In Part I we found that the paramagnetic Au-Fe center can
effectively be described with a spin Hamiltonian with a single spin § = 1/2. In the
Ludwig-Woodbury description Au? and Fe{ give rise to effective electron spins §; =3/2
and S, = 1, respectively. These spins can give rise to a total spin with values § = 1/2,
3/2, or 5/2. The same values result when §; = 1 and S, = 3/2, as is the case for AugFef
which in Part I is considered the more probable state. In order to arrive at the observed
effective spin, the § = 1/2 state has to be the ground state of the system of two
exchange coupled spins. This will be the case if there is an antiferromagnetic inter-
action.

At this stage it is important to find how the hyperfine interactions of the individual
spins §; and S, with the individual nuclear spins I, and I, translate into the inter-
actions with the effective total spin in the spin Hamiltonian in Part I. The fact that
this spin Hamiltonian with effective spin § = 1/2 gives an accurate description of the

Tablel

Base functions of a total spin 8’ as expressed in the original base functions of the con-
stituent spins §; = 3/2 and 8§, = 1. Energy eigenvalues of the exchange interaction and
relations between hyperfine interaction parameters are given

8 mg base functions of S, and S, energy hyperfine inter-
. action parameters

A-l A2
3 4% 34D S
£4 FV0]£ 5,00+ 3115 [+ 4 +1>
3 HV10]E 5 F 4+ 11152 3,00 + V30| F 3, £1>
£ o4d V] 400— 3VI0)x 4 21 R
+4 V0] & F1> + LV15|+ 1,00 — 21380 |F &, £1>
it HRELFL-IBIELO+IEFL LD -3 F4 -4
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system, indicates that an exchange interaction term has to be large with respect to
the Zeeman interaction. For transition metal ions, large exchange interactionstend to be
very common. In this case an unperturbed spin Hamiltonian # = J8, . S, is allowed
to operate upon the twelve base functions |msg,, ms,> which are the eigenfunctions of
the operators Sy, Sy, S,, and Sg,. The resulting matrix can be diagonalized by taking
combinations as given in Table 1. In this way the Hamiltonian matrix reduces to
three blocks of dimensions six, four, and two, which can equivalently be described by
effective spins S’ with values of 5/2, 3/2, and 1/2 and corresponding spin quantum
numbers mg. In the case of antiferromagnetic exchange (J > 0), 8" = 1/2 is the
ground state, the next state being (3/2) J higher in energy.

The most important term to add as a perturbation is the hyperfine interaction.
For simplicity we restrict ourselves to an isotropic interaction

HO = AS, . I, + 4,8, - I, @

but this approach essentially applies also to axially symmetric interactions. The
resulting first order energy contributions on the diagonal of the Hamiltonian matrix
are to be compared with those resulting from the term

H = A1S' . I + A8 . I (8)
in the empirical spin Hamiltonian in Part I. For the 8" = 1/2 state this results in the
equation 3(Aimy, + Asmy,) = BAymy, — 24,m;, which gives 4, = (3/5) A1 and 4, =
= —(3/2) A2. The relations for all three spin states are included in Table 1. In this

way the actual hyperfine parameters 4, and A, which will be used for further analysis
are expressed in the experimental values 4; and A4s.

3. Atomic Wave Function Parameters for Au and Fe

For gold the 5d, 6s, and 6p atomic orbitals need consideration. The electronic structure
of the free gold atom has a closed 5d shell: 5d'%s. In a solid or in molecules 5d elec-
trons are apt to hybridize or are subject to promotion to the 6s and 6p states, so that
holes in the 5d shell can result.

Table 2
Atomic wave function parameters for gold in several electronic configurations

configuration {r~3ypq (A73) [wes(0)]2 {r3yep
@A (A72)
one-electron collective
value value
5d7¥) 106.4 —53.2 — -
5d8%*) 99.4 49.7 — _
5d%s?*) 90.0 90.0 — —
5d9%) 92.5 92.5 — _
5d10%) 85.0 0 — —
5d106s**) 96.5 0 260 —
5A10Gg* **) _ _ 276 _
53106 p** **) _ _ - 41

*) Hartree-Fock calculation, [15].
**) Hartree-Fock calculation, [13, 14].
*%**) Atomic beam experiment, [17].
***%*) Resonance scattering experiment, [19].
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From approximate Hartree-Fock calculations by Herman and Skillman [13]
(see [14]) and from similar calculations by Fraga et al. [15], values of (r=3)s4
for various configurations can be derived, as given in Table 2. For a lower occu-
pation of the 5d shell, higher values are found. This brings us to an estimate of
90 A-3 for a nearly completely filled 5d shell. All values are one electron values. Actual-
ly the unpaired electron spin can originate from a number of missing d-electrons. Due
to Hund’s rule, their spins are parallel and add up algebraically, so that one should
consider the total charge distributions of the various configurations and their resulting
<r=3) values. For a closed 5d shell the contributions of the various electrons give rise
to an effective value (r=3)¢ff — 0, as a matter of fact. These effective values are also
given in Table 2. For a transition metal ion in a crystal field of tetrahedral 43m(T )
symmetry, these values do not apply, as there is a splitting of the d-levels. The three
triplet states d,,, d,,, and d,, add up to an electron distribution which produces an
isotropic hyperfine interaction, forming a kind of closed subshell, as well as the doublet
states dg:_,: and d,.. This means that the only possible deviation from an isotropic
interaction results from only one missing or excess d-electron. For lower symmetry
the triplet and/or doublet split even further, so that the same is still true. An illustra-
tion is given in Fig. 1.

Extrapolation of data from Herman and Skillman for the 6s orbital [14] and use
of an empirical relativistic correction formula for heavy nuclei [16] leads to |es(0)2 =
= 260 A-3. Also experimental data are available. In an atomic beam expernnent
Wessel and Lew [17] determined the hyperfine interaction of atomic Au in the 28,
ground state, resulting in |pes(0)|2 = 276 A3, Similar agreement follows from the
experimental value of 256 A=3 from an EPR experiment on Au® in NaCl, in which
ionic matrix the atomic 6s electron is believed to be still localized on the gold atom
[18].

No theoretical estimate for the 6p orbital is available. Experimental data exist
however. The excited 6p 2Py state of gold has been investigated by resonance light
scattering [19]. From the observed quadrupole effect, using the known electric quadru-
pole moment of 1%7Au, a value {r=3)q, = 41 A-3 can be evaluated. No Sternheimer
nuclear shielding or antishielding factor is incorporated, although it may change the
value by up to -+ 309, for heavy nuclei (e.g. [20]). The experimental accuracy of the
above value is not very large either.

As %Fe is a widely used nucleus in Mssbauer spectroscopy, numerous calculations
on various electronic configurations of iron ions are available. In most compounds
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Table 3

Atomic wave function parameters for iron in several electronic configurations
(one-electron values)

r3yza (A7)

configuration 3d» 3d"4s4p

3 — — 45.4
4 — — 41.3
5 44.0 42.6 37.3
6 39.7 38.6 33.5
7%) 35.5 34.4 30.0
) 31.2 30.1 26.5
9%) 26.9 25.8 23.5
(r3y3q (A3) [as(0)[* (A73)

3642 % xkk) 38.2 32.6

koK) — 25.1

*) Extrapolations.
*%*) Relativistic self-consistent field calculations, [21].
**%) Hartree-Fock calculations, [22].
**%%) Hartree-Fock calculations, [13, 14].
#dokddk) Hartree-Fock calculations, [23, 247,

iron ions are positive with one or two electrons in 4s orbitals. Interstitial transition
metal impurities in silicon, on the other hand, confine their electrons to the 3d shell
and may adopt negative charge states. Consequently their 3d shells will have a higher
occupation, so that we had to extrapolate available calculated results to 3d?, 3d®, and
3d? configurations. Relativistic self-consistent field [21] and Hartree-Fock [22] cal-
culations give a comparable dependence of {r=3)3q on the 3d configuration. These
results and our extrapolations are also given in Table 3.

Hartree-Fock results by Herman and Skillman [13] (see [14]) and Watson et al.
[23, 24] for the 4s orbital are also included in Table 3. Calculations on the 4p orbital
have not been found.

4. Analysis and Diseussion

In the preceding sections we indicated that an LCAO description presents the easiest
way to analyse hyperfine interactions. Arguments against such a simple picture have
already been mentioned. Nevertheless we will shortly consider it, before going to an
analysis which makes allowance for the many electron character of the system. The
justification for an LLCAO description is generally found in the fact that a lattice
imperfection can be described with a single unpaired electron which is shared over
some atom sites. In order to arrive at this situation, an important requirement must
be met: both the Fe-3d and Au-5d shells have to be filled completely. Such a con-
figuration can only be achieved if the gold atom does not occupy a regular sub-
stitutional site.

A first possibility is that, just like iron, also gold is interstitial. This is considered
rather improbable in Part I of this article. Another possibility is the vacancy—inter-
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stitial model by van Vechten and Thurmond [9]. In that case the electron bonds on
the four silicon atoms around the gold site have to be reconstructed as if they surround-
ed a single lattice vacancy. Then the gold atom needs no longer to supply electrons
for covalent bonds. When we apply this model to the Au-Fe complex, it is hard to
imagine how to conserve trigonal symmetry. In such a Au;Fe; complex, either with
or without a vacancy, we arrive at a Aut-5d'°-Fe2--3d!° configuration where the
paramagnetism arises from a bound hole. This model is reminiscent of the model
which has been proposed for substitutional Pd and Pt in silicon [6]. Only in this model
an LCAO analysis deserves further discussion.

By substitution of the experimental data for the hyperfine parameters ¢ and b as
presented in Part I and the wave function parameters of Section 3 into (2) and (3),
we can derive the distribution of the electron over the atomic orbitals. The resulting
values for the localization are given in the first part of Table 4. The anisotropic parts
of the hyperfine interactions may arise from d- as well as from p-orbitals. Both possi-
bilities are considered.

For the gold orbitals a lower limit for the quadrupole interaction is avallable Usmg
(6), the experimental limit of P = 15 MHz just corresponds with the value 73upiu =
= 0.165 for a 5d orbital. Agreement is also obtained for a 6p orbital as an even larger
value of P results in that case.

On the two transition atoms a total localization of 309, is found when taking
d-orbitals and about 459, taking p-orbitals. The anisotropy of the hyperfine inter-
actions with three 2°Si neighbour sites could not be resolved due to overlap with the
central EPR lines. It is customary to assume sp® hybrids on these sites. Using wave
function parameters from [10], this accounts for 59, of the electron wave function.
Localization on further silicon lattice sites gives rise to unresolved hyperfine inter-
actions, constituting the inhomogeneous EPR linewidth. The linewidth reported in
Part I is comparable to those observed for lattice defects. Electron nuclear double
resonance data of the divacancy indicate that such smaller interactions can account for
another 309, of the electron [25, 26].

In addition to earlier objections against a Au;Fe; structure, the above results leave
some questions. Firstly a bound hole wave function can only be formed from a com-
bination of occupied orbitals, so that the unoccupied Au-6s and Fe-4s orbitals cannot
contribute. As the 5s/3s orbitals are too distant in energy, the origin of the isotropic
interaction is not clear if it is from a bound hole. The same argument only leaves d-
orbitals for the isotropic interaction. In the second place the total localization is
remarkably small. Especially when choosing d-orbitals in the LCAO wave function
359, is left unexplained. Finally there is no explanation for the opposite signs of ax.
and bye.

A more promising approach is a description of two coupled electron spins as intro-
duced in Section 2.2. Strong antiferromagnetic coupling gives an effective total spin
S = 1/2 as observed experimentally. This spin can arise from either a AuJFe{ or a
Au;Fef complex. Both possibilities will be considered here. In the model of coupled
spins we can still adopt (2), (3), and (6), if we replace the quantltles 7n20? |g(0)|2,

2B2r=2),, and ny*(r=3), by effective wave function parameters [95(0)| % and (3>,

In order to know which d-shell configurations follow for different charge states of
the two impurity atoms, a schematic energy level diagram is given in Fig. 1. It shows
the splitting of the triplet state if the symmetry is lowered from tetrahedral to trigonal.
The shapes of the d-orbitals as derived from group theory are also indicated, expressed
in the usual way in z, ¥, and z coordinates. The singlet orbital dgy 4 4. +..c has the trigonal
{111) direction as its symmetry axis.

First we will pay attention to the anisotropic part of the hyperfine interaction, i.e.
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to the d-orbitals. In AulFe{ the Ludwig-Woodbury model gives a configuration
Au-5d76s6p3-Fe-3d®, with respectively spins of §; = 3/2 and S, = 1, due to three
and two missing d-electrons. If we derive the actual hyperfine interaction in the way
described in Section 2.2, we obtain the values given in Table 4. The resulting values
e — 4.5 A-3 and <r'3>e“ = 8.7 A3 are clearly much smaller than the one-
electron values in Tables 2 and 3.

On the other hand, Fig. 1 shows that the Au,-5d’ and Fe;-3d® configurations both
form filled sub-shells as mentioned in Section 3, leading theoretically to {r=3)°f = 0.
In that case we should account for the observed values by a fractional charge transfer.
On the gold atom 109, of an electron from the bond orbitals might occupy the
singlet level. On the iron atom 179, of the electron in the singlet level might be promot-
ed to a 4s orbital, leaving a fraction of a hole in the closed sub-shell. In both cases
the right axial symmetry direction follows.

A discrepancy enters when we consider the quadrupole interaction with the gold
nucleus. The resulting value (r~3)¢f > 16 A-3 cannot be brought into agreement
with the value of 9 A=3, obtained from the hyperfine interaction. This brings us to
the alternative model of a AugFef complex, which for other reasons is considered
more probable in Part I. The configuration Au=-5d8-Fe*-3d” gives rise to spins S; =
and S, = 3/2, which leads to a total spin §" = 1/2. In this case the subscripts in
Table 1 have to be interchanged. We then arrive at different actual hyperfine param-
eters giving (r-3)§if — 1.8 A=% and (r—% — 21 A-3, In this way the hyperfine
interaction is brought into agreement with the result of the quadrupole interaction.

On the other hand, we have arrived at a case where on the gold atom the singlet
level dyy 1z 420 18 occupied above a closed sub-shell, while on the iron atom the electron
of the singlet level is missing from a closed sub-shell. The obtained {r~3)§ values are
much smaller than the free atom values for entire d-orbitals. In particular for iron
there is a factor of 14 difference.

At this stage it is worthwhile to consider the abundant amount of data on single
transition impurities and impurity pairs in silicon [3] and on iron-defect complexes
[27]. These hyperfine data can easily be corrected for differences in the nuclear
magnetic moments which enter in (2) and (3). Then in all cases values of the same order
of magnitude follow, irrespective of the d-shell configuration. This indicates that there
is a more general reason why the {(r=3)§ values for transition metals in silicon are
much smaller than for free atoms. Reduction of (r~3); values which has been observed
in other materials to a much lesser extent, is often accounted for by hybridization
or by admixture of nearest neighbour ligand orbitals. From the observed small
localization on nearby lattice sites, it follows that in this case such effects do not
contribute appreciably. In a review on iron group ions in tetrahedral coordination
by Ham and Ludwig [28], this has already been recognized. As another phenomenon
which affects the transition metal wave functions, they mention covalency of the
host lattice. In a covalent solid like silicon this will clearly be a main effect. However,
the case of silicon has explicitly been left out of consideration by Ham and Ludwig.

The isotropic part of the hyperfme interaction is the other parameter to account for.
The effective values |y(0)|% which follow in the two alternative cases are included
in Table 4. In a model where the electron spin primarily arises from d-electrons, it
is difficult to explain the isotropic hyperfine interaction from occupation of the outer
s-orbitals. From experiments in many other materials, as well as from theoretical
calculations [23], it is known that transition ions show a pronounced core polarization.
This polarization of the closed inner s-shells is due to the unpaired spins in the outer
d-shell. The net unpaired spin of the successive s-shells tends to be of opposite sign.
For iron this results in a net spin which is opposite to the 3d electron spins. This readily
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explains the opposite signs of ape and bpe. Both theoretically and experimentally in
most substances the unpaired spin due to core polarization in iron can be determined
to be equivalent to an unpaired spin density |y(0)|2 = 7 A=3 for a 3d® configuration
[23]. For configurations with a different number of unpaired 3d electrons this value
should proportionally be changed. For 5d transition metals like gold, calculations
yielded even larger core polarizations, equivalent to a value of |p(0)|2 =~ 10 A3 per
unpaired 5d electron [29]. The experimental values in silicon tend to be nearly an
order of magnitude smaller, not only for the present EPR spectrum, but as well for
all the other reported spectra [3, 27].

5. Conclusions

From the preceding analysis and discussion we conclude that the EPR spectrum
which is described in Part I arises from two exchange coupled electron spins. A sub-
stitutional negative gold ion gives an electron spin S = 1. An interstitial positive
iron ion has electron spin S = 3/2. Strong antiferromagnetic coupling leads to a total
effective spin 8" = 1/2.

The wave function parameters (r—3>; which can be derived from the hyperfine
interaction are about an order of magnitude smaller than the values for a free atom.
The isotropic hyperfine interaction is thought to arise from core polarization. Also
this effect is an order of magnitude smaller than in most other materials. An explana-
tion for the smaller {r=3); values has to be found in the covalency of silicon. Due to
a kind of screening, the d-orbitals may appreciably be expanded with respect to the
free atom orbitals. This delocalization of the d-orbitals may also reduce the core
polarization.

For a quantitative confirmation of these suppositions, we have to wait for application
of modern theoretical computation techniques to these problems. Calculations based
upon LCAO principles, although useful for lighter nuclei like carbon and even silicon,
do not lead to satisfactory results for heavier nuclei and certainly not for transition
metal atoms. Very recently spin restricted scattered-wave Xo calculations on inter-
stitial transition metal ions in silicon have been performed by Deleo et al. [30]. Their
results point into the same direction as our experimental observations. The Green’s
function approach which has recently been applied to lattice defects in silicon, may
also give interesting results for transition metal impurities.
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